Posted on Leave a comment

Pernicious Anemia and B12 by Dr. Virginia Vetrano

Pernicious Anemia and B-12
by Dr. Virginia Vetrano
Hygienic Review
Vol. XXVIII January, 1967 No. 5
Pernicious Anemia and B-12
Dr. Virginia Vetrano

“You can’t get well of pernicious anemia,” so imply all the authorities, “your stomach doesn’t produce the intrinsic factor necessary for the absorption of B-12, but as long as you take vitamin B-12 shots, you don’t have to worry.” In so many words they are saying: don’t correct your stomach condition; rely on this crutch, because there are billions of willing microorganisms busily engaged in excreting vitamin B-12 just for you. Recently, we admitted a woman to the Health School who had pernicious anemia. She had had it well over six years and had taken vitamin B-12 for approximately five of those years. She completely lacked hydrochloric acid, and took this in the form of a drug for a while; but then she began using enzymes. She had pain and swelling in her feet and ankles. Six years previously she developed blood clots in her lungs, while receiving shots.
Before entering the Health School, she was taking both vitamin B-12 and iron shots, once a month. Despite medical therapy, she complained of excessive fatigue plus other discomforts before coming to the Health School and she left feeling very well. Accompanying the anemia were mucus colitis and abnormal sounds in the ears (tinnitus). She had also recently suffered with an inflammatory condition of her middle ear, which became so severe that the tympanic membrane burst. She also showed signs of diverticulosis.
Although she was 74 years old and was in a very bad condition when she came, she was feeling very well when she left, after a period of only eight and a half weeks. She was old enough to be set in her ways and much of the difficulty with her was in trying to change her wrong habits of living. She was very anxious to get back to her potato diet. Although she left the Health School prematurely, as many do, she has written back saying that she is doing fine and was amazed at the way she regained her strength and feeling of wellbeing.
She suffered with one condition after another prior to coming to the Health School. Care at the Health School not only started her well on the road to recovery from anemia, but also relieved her of many of her other troubles. This is not unusual with Hygienic attention. It is a well known fact in Hygienic circles that many cases of pernicious anemia double their blood cell count in only one week of fasting, without taking vitamin B-12 shots.
Dr. William Howard Hay recorded 101 cases of pernicious anemia and only eight of them failed to recover, and these were dying when they arrived for his care. It is not news to Hygienists that these cases get well; most abnormalities of the blood are corrected through fasting.
Pernicious anemia is a grave form of anemia, characterized by an extreme reduction in the number of red blood cells with a reduction of the total number of the leukocytes, variation in the size and form of the red blood cells, a lack of hydrochloric acid secretion, often combined with neurologic symptoms and gastrointestinal symptoms in some.
Symptoms: The main symptoms are sore, shiny tongue, a lack of hydrochloric acid and sometimes an absence of the digestive enzymes of the stomach, increased tiredness, weakness, faintness, a waxy pallor or lemon yellow tint, shortness of breath and palpitation, edema, recurrent fever, digestive disturbances, pain in the epigastric region, occasional hemorrhages, often concomitant with flabby fatness.
Nervous symptoms may develop before the symptoms of anemia or later in the course of the disease and develop in about 80 per cent of cases. These take the form of symetrical paresthesias (abnormal sensations) of the toes or fingers, such as formication, burning, tingling or itching. In severe cases numbness develops. In 50 per cent of the cases spinal cord symptoms are severe and cause ataxia and muscular spasticity. Some are unable to hold things and are continuously dropping them. Performing delicate tasks with the hands becomes extremely difficult, if not impossible. The patient may eventually become a cripple due to progressive weakness, spasticity, incoordination and stiffness of the lower extremities. Nothing tastes good to these people as their sense of taste and smell is lost. They become dull, apathetic and irritable, and unable to concentrate. In some oases frank psychoses becomes a problem. Constipation and diarrhea frequently accompany the anemia. Besides a sore !
tongue, some patients complain of the whole mouth being sore.
Clinical Manifestations: The pulse is soft and quickly drops (bounding). In severe cases of anemia, recurrent bouts of fever plague the patient. The tongue is usually shiny and smooth and, in some, very red and raw like beef. The tongue may ulcerate or vesicles may form. The smooth tongue is due to atrophy of the papilla of the tongue. The heart beats very fast and a soft hemic murmur is audible. The liver may be slightly enlarged and the spleen, though seldom palpable, is thought to be enlarged in all cases. When a tuning fork is placed on the shin bone, the patient cannot sense the vibrations, nor does he have a sense of position of the various members of his limbs. He may not be able to sense when touched, but he still senses pain and temperature. If he stands with feet together and eyes closed, he will sway. Reflexes vary from diminished to heightened. Visual defects and optic atrophy develop in occasional cases. Retinal hemorrhages occur in some.
Pathology: In discussing the pathology it is important to realize that most tissue changes discussed in textbooks are changes seen after death. These are not necessarily the condition of the body in the early and even in some late stages of pernicious anemia. For instance, at death the fundus and body of the stomach show extreme atrophy. The coats of the fundus and body of the stomach are very thin and the glands of this area are almost completely destroyed; but during the course of the disease, biopsy findings show that only about 40 per cent of cases have the extreme gastric atrophy seen at autopsy. The biopsy shows varying degrees of atrophic gastritis, with cellular infiltrations into the secreting layers of the stomach and atrophy of the glands. Changes seen at autopsy are end points of pathology and do not portray the condition of the patient when he first presents himself to the physician or the orthobionomist (professional Hygienist).
The blood picture varies with the exacerbations and remissions of the disease. The red cell count may be as low as 500,000 during an exacerbation of the anemia and as high as 4,000,000 during a remission. All the elements of the blood in general are low _ the red cells, the leukocytes, and the platelets (particles necessary for clotting of blood). The hemoglobin per cent is also diminished, but not in proportion to the red cells, so that the color index may be relatively high. Many of the red cells are well colored, giving us the term hyperchromic anemia.
As mentioned before, gastric atrophy is supposedly the basic lesion of pernicious anemia. Atrophy of the gastric glands, it is thought, is responsible for the lack of so-called intrinsic factor which supposedly facilitates the absorption of vitamin B-12 from foods. Boyd states that sometimes the gastric mucosa is as thin as parchment, but again he is viewing the stomach at death. Naturally, digestion would be impaired, due to a lack of gastric secretion, at this stage. The pyloric region or antrum (lower part of the stomach) which secretes only mucus does not atrophy but is completely normal, so he states. In fact, Boyd states that an abrupt change can be seen from the atrophy of the body to the normalcy of the antral region.
Etiology: Pernicious anemia is supposed to be due to a lack of an unknown entity, which has not yet been isolated, called the intrinsic factor or hemopoietin, without which vitamin B-12 cannot be absorbed. Cecil and Loeb state that: “Although the essential lesion of pernicious anemia, failure of intrinsic factor secretion, may arise from many processes interfering with normal gastric secretory function, in most patients the gastric lesion is idiopathic.” In other words, the cause of the gastric lesion is unknown.
Guyten states that the intrinsic factor is secreted in the mucous glands of the pyloric area of the stomach and to a lesser degree in the gastric glands. Best and Taylor state the opposite _ that it is the fundus and body of the stomach which secretes the intrinsic factor, and that the pathology which is characteristic of pernicious anemia proves this because the pyloric region is normal whereas the fundus and body of the stomach are atrophied.
The intrinsic factor is not secreted by the small intestines, although some think it is secreted at the beginning of the duodenum. It is thought to be a mucoprotein or many mucoproteins, and the manner by which it facilitates absorption of B-12 is unknown. It is thought to be an enzyme which acts at a pH of seven. That of the hog stomach tissue can be digested with trypsin and pepsin and is destroyed by heating to 45 degrees centigrade.
Since the intrinsic factor acts only in a pH of seven, it would seem that it would of necessity be useful only in an area of the digestive tract that is neutral or be altogether non-useful to man. Inasmuch as the secretions of the gastrointestinal tract of man are either acid or alkaline, where would the intrinsic factor be useful? Is this a real substance or the result of poor digestion and absorption? When most of the stomach is removed because of gasrtic ulcer or cancer, pernicious anemia will develop in two to seven years. Is this really due to a lack of intrinsic factor or poor digestion due to a lack of secretions in general?
We know that patients who have been on vitamin B-12 injections for years without much benefit can take a fast and get well. This would seem to indicate that they still had the power to secrete the so-called intrinsic factor. It would also indicate that, perhaps, they were suffering with a simple gastritis, and that after fasting the inflammatory condition healed, leaving them better able to secrete the necessary enzymes for good digestion. We do know the anemic get well while fasting and stay well if they continue to live properly. Why they get well could be due to a number of factors. The blood picture improves while fasting, though no extraneous vitamin B-12 is available.
Highly important, I believe, is die elimination of the toxic factor while fasting. This removes a great inhibiting influence from the blood-forming tissues. After the fast, these subjects are fed properly combined foods of vegetable origin. Properly combining their foods enables them to digest and absorb all elements in the diet. If their gastric mucosa is damaged or atrophied, as in long standing cases, feeding foods in compatible combinations will not place a burden on the impaired organ and better nutrition is maintained despite the handicap.
Hygienically, it is thought that toxemia plays an important role in the production of pernicious anemia. Toxemia itself causes lowered functioning power, not only of the secreting glands of the stomach, but of every organ in the body, including the blood-forming organs. Lowered functioning power of the gastrointestinal system hinders digestion, causing much fermentation and putrefaction. This in turn interferes with absorption of nutriments necessary for the production of blood and also causes the absorption of toxic products of indigestion, producing more toxemia which in turn causes more lowered functioning power and consequently less digesting and blood forming power.
Much ado is made of the vegans in England who supposedly after a few years develop pernicious anemia because of a lack of animal proteins in their diet. It is said that they do not develop the blood condition but that they develop the more serious troubles, such as degeneration of the spinal cord and brain. These symptoms, they say, may be developing so insidiously that the vegan may have a serious case of pernicious anemia before he realizes it. Better Nutrition (Nov. 1966, p. 11) advocates that the vegan take vitamin B-12, in extremely small amounts daily, so that this can be prevented. Thus, the big scare is going around that leads the uninformed to believe that man must be a carnivore or he must take vitamins.
Some of the vegans in England, we are informed, are of the tea and white flour biscuit type. Vegans not only abstain from flesh foods, but also from wearing anything of animal origin. This is to emphasize that they are vegetarians for ethical reasons only. I am not stating this with any maliciousness, but only to show that they have not given too much thought to their health, only to the welfare of animals. Therefore, they eat anything they like in any kind of combination that pleases the taste buds. No dietary precautions are taken _ such as getting whole grain foods or raw fruits and vegetables, or a good source of proteins. Their diet is lacking in more than one essential element. Vegans in America who also practice Hygienic living have splendid health. Man does not have to eat animals to get his vitamin B-12.
Vitamin B-12 is necessary in minuscule amounts. This, regardless of what the “authorities” say, we can get in our vegetable foods. We can store enough B-12 in the liver to last approximately two years or more. Some people who have had a total gastrectomy for one reason or another, do not develop pernicious anemia until seven or eight years after the operation. We can store a tremendous amount of vitamin B-12, or we need it in even smaller amounts than thought necessary at present. Guyten states that our minimum daily requirements is less than one microgram a day. People with good digestion and on a wholesome diet probably need less than that.
The question is: can we get it from vegetables? I say yes. We need it in infinitesimal amounts and if one is eating a diet predominating in fresh fruits, vegetables and nuts in the uncooked state, he will get sufficient vitamin B-12 to maintain him in good health for a lifetime.
Most sources state that vegetable products show no “measurable activity” when speaking of this vitamin, called cobalamin for short. “No measurable activity,” does not mean that there is none at all in the vegetable. Best and Taylor state that: “The extrinsic factor (vitamin B-12) is present in liver, beef, rice polishings, yeast and other substances rich in the vitamin B complex.” They continue that: “It is also found in the intestinal contents of normal persons, as well as in the feces of patients with pernicious anemia. There is, therefore, no reason to believe that a dietary deficiency of this factor is the cause of the disease.”
Other authorities also condemn vegetable foods as lacking in vitamin B-12, but they never state that there is no vitamin B-12 in vegetable foods. Indeed, I think they are hiding the truth. The meat packing industry, who furnishes the money for these latest experiments, has the researchers minimizing the amount of vitamin B-12 found in vegetables and nuts. I hold that if it is not in fresh fruits, vegetables and nuts and bacteria do not manufacture it where man can absorb it, then man does not need it. The diet to which man is constitutionally adapted should furnish all the requisites of good nutrition. If it isn’t present in the diet and bacteria do not produce it where it is absorbable by man, then what can we think except that nature must have made a big mistake.
The Cyclopedia of Medicine makes the following statement about cobalamin: “The vitamin B-12 requirements of man are obtained from foods, mainly those of animal protein origin: kidney, liver, heart and muscle meats being the richest sources; but lesser amounts occur in other foods, including eggs, cheese and milk. Vegetables contain practically no vitamin B-12, in contrast to their high content of folic acid.” Here again we note some hedging. In contrast to the folic acid content, vegetables have practically no vitamin B-12 content. They do not state that there is no vitamin B-12 what-so-ever in vegetables.
Which vegetables do they use and are they cooked when the assay is made? Under what conditions were the tests made? A change in conditions will many times change results and produce errors in thinking. Are they sincerely trying to find it in vegetable products or are the researchers trying to satisfy their backers by finding the demanded results. Furthermore, no one gives us any information about nuts. They only contrast animal products to vegetables. What about fruits and nuts? Not until we are furnished with a reliable source of information, and not until they have tested all fruits, vegetables and nuts can we say that vegans are unable to get vitamin B-12 in their diet.
Although we only need one microgram a day, Adele Davis in Let’s Get Well asserts that the strict vegetarian should take 50 grams of cobalamin (vitamin B-12) a week, “while their stomach secretions are still normal,” thus implying that in time on the vegetarian diet, they I will soon develop abnormal stomachs. She states that of the vegetable foods, only “yeast, wheat germ and soybeans contain appreciable traces of vitamin B-12.” Evidently she is misinformed, for it is stated in Boyd’s pathology that vitamin B-12 is found in ground nuts (peanuts). However, he also has the idea that it is found in only one or two vegetable foods.
Experiments made not so many years ago * by Berg, who was not subsidized by special interests, showed that growth will be normal in animals who have a supply of fresh fruits and vegetables. White, Handler, Smith and Stetten in their Principles of Biochemistry state that: “The requirement of cobalamin is so minute that its wide distribution in foodstuffs and retention by the animal organism would seem to preclude the possibility of nutritional deficiency in normal individuals.”
Berg states that vitamin B complex is present in a large number of foodstuffs and Best and Taylor state that vitamin B-12 is found in every food which has vitamin B complex in it; so, vegetables have vitamin B-12 in them even if in small amounts. I have already shown that we only need small amounts of cobalamin and that normal people have the ability to concentrate it and absorb it readily.
Berg states that: “The following whole grains and other seeds contain considerable amounts (of B complex): oats, maize, wheat, barley, malted grain, beans, soy beans, earthnuts, pulses generally, cotton seeds. Cajori reports that to maintain growth in rats, 0.5 gramme of chestnuts, walnuts or hickory nuts, 2 gramme of pine kernels, hazel nuts or Para nuts, and nearly 3 grammes of almonds were requisite. According to McCollum and Simmonds, seeds in general contain large quantities of B, the _ husks and the brans being especially rich in this substance, which can easily be extracted therefrom.” . . . “Aron insists that fresh fruits contain plenty of B. Plums, pears and apples are not conspicuous in this respect; but cocoanut cake, oranges and lemons contain large quantities; and according to Osborne and Mendel, orange juice is as effective in this respect as fresh milk.
“All observers are agreed in describing cabbage as peculiarly rich in B; so are green vegetables in general. According to Osborne and Mendel, one gramme of the dried substance of lucerne or spinach contains as much B as do 2 grammes of wheat, soy beans, eggs or milk; white cabbage, clover and timothy grass are about equal to spinach. According to Steenbock, Gross and Sell, and according to Osborne and Mendel, among the last named, clover is the richest in B. Lucerne contains nearly as much, but the amount in spinach, tomatoes, cabbage, kohlrabi, carrots, and potatoes, is only half as great, and that in beetroots is less _ all measured in the dried state. The dried substance of 16 cc of milk has the same efficacy as 1 gramme of dried spinach. According to Osborne and Mendel, confirmed by Whipple, onions are fairly rich in B. So are turnips, mangel-wurzels, the leaves of the same, and tomatoes, very rich in B; and according to Steenbock, Gross and Sell, in an artificial diet, !
15 per cent of carrots, swedes, or the rhizomes of Arum maculatum (lords and ladies), will suffice to maintain normal growth, when sweet potatoes were used instead of the carrots, etc., 20 per cent was requisite; of sugar beet or of mangel-wurzel, even more was needed.” While it is true that Berg was speaking of vitamin B complex, it is nonetheless true that where vitamin B complex is found, there also is found B-12, even if in small amounts.
B complex is fairly insensitive to heat, but is water soluble and will be found in the juices of vegetables which are thrown away in many households. During the cooking process of meat, 20 to 50 per cent of vitamin B-12 is lost, according to authorities. Can we not assume that much of this vitamin in vegetables is also lost in the cooking process and that by eating more raw fruits, vegetables and nuts more vitamin B-12 will be saved.
Some animals, such as fowl, get cobalamin by eating manure which is a rich source. Ruminants are furnished B-12 or cobalamin by microorganisms which produce it in their digestive tracts; but in slighted man, vitamin B-12 is only synthesized by microorganisms in the large bowel where it can’t be absorbed. Absorption of vitamin B-12 in man, we are taught, takes place mainly in the terminal ilium. It seems that man has no alternatives except to take pills or eat dead animal organs or worse yet, become a coprophagist and eat feces, or die of pernicious anemia. If we have to become coprophagists and eat dung, activated sewage sludge, dried estuarine mud, dead parts of animals, and vitamin pills to derive so-called essential nutrients for life, strength and health, then something is surely wrong. Nature did not look out for man.
A few years ago nutritionists urged people to take calcium and phosphorus because that’s the stuff teeth and bones are made of. Now recent studies say we can’t make teeth even if we have an abundance of calcium and phosphorus, without magnesium. The fact is the chemistry of the body is almost as unknown today as it was a hundred years ago. No one can get into a live cell and watch the chemical activities going on, so no one really knows what man needs or the proportions that he needs these things in. We only know that a simple natural uncooked diet of green vegetables, fruits and nuts grown in good soil without sprays, will furnish all the necessary vitamins and minerals, and in the proper proportions. If man observes proper food combining and does not hamper digestion in any way, and maintains emotional poise, then he will be able to extract from live foods all the elements necessary for health, strength and long life.
While producing commercial aureomycin, the organism streptomyces aureofaciens is grown in a culture medium to induce the production of the largest amount of the antibiotic. The antibiotic is then extracted from the total products of the bacteria, thus leaving a residue. Naturally, all chemists serving commercial interests, must find some use for the residue. Vitamin B-12 was part of the residue; hence, a market must be made for it. Could this be one of the reasons why we must either eat flesh or take vitamin pills?
Let us get back to pernicious anemia. Before the medical profession had liver, liver extract and vitamin B-12, pernicious anemia was “progressively and uniformly” fatal under their care. Under Hygienic care, as far back as 60 years ago, Weger says: “The only cases of pernicious anemia that fail to respond favorably to Hygienic methods are those in which the heart muscle has degenerated and in which a general dropsical condition has existed for a long time, accompanied (as is often the case) by cerebral manifestations or mania and profound hemolytic jaundice. These advanced symptoms indicate that the organism has passed beyond the power of recuperation because of nutritional devitalization.” Dr. Hay in his Health Via Diet tells of his 101 cases of pernicious anemia where only eight failed to recover. Dr. Hay says of these: “The blood during a fast undergoes no visible changes as to cell count unless markedly abnormal when the fast is begun in which case there is a return to normal.” For most of two weeks (in progressive pernicious anemia) the red erythrocyte count continues to fall before there is a regeneration in the blood-making organs; then gradually the microscopic picture begins to show round erythrocytes with regular edges, no crenations or irregularities, and soon there is noticeable increase in the number of these with gradual disappearance of the adventitious cells present in the beginning.
“Not unusually there is a gain during the succeeding two weeks that brings the total back to the normal five million erythrocyte count, even though this may have been at, or below, one million in the beginning.” At the Tilden Health School 75 per cent of the cases recovered and of the deaths he says: “The deaths, which represent the 25 per cent, occurred within a few days of admission to the institution. These cases were so far gone that nothing could be done, and no treatment was attempted, as they were dying when admitted.” Medical treatment makes of the patient a physiological cripple. It does not remove the cause of the disease; hence, the gastric condition is not corrected so that his nutritional status remains poor, to say the least, and the gastric condition which is not corrected very often progresses to cancer and an early death.

Dr. Virginia Vetrano

Posted on Leave a comment

Coconut Oil: A New Treatment for Alcohol Addiction


Dry Drunk Syndrome

Roger Hershline, PhD, MD knows the dangers of alcohol abuse firsthand. As a young successful medical professional with a heavy workload, excessive stress drove him to drink as a means of release and relaxation. In time, Roger’s chronic drinking habit led to full-blown alcohol addiction.

His personal life suffered. As with many alcoholics whose marriage and family lives are destroyed, Roger’s life was in shambles. Intoxication and the resulting behavior often lead to fights, jail, and trips to rehabilitation centers. He tried many times to quit, but couldn’t. Feelings of anxiety, depression, and a sense of impending doom when he was sober were relieved only by drinking. His desire to escape led to his use of other drugs.

He finally ended up in federal prison, resulting in a loss of everything dear to him, including his desire to live. Because of his confinement, he was forced into sobriety, but he still suffered from the effects of alcohol addiction. Symptoms of depression, anxiety, irritability, irrational behavior, poor decisions, and cravings for liquor hounded him daily. These symptoms, known as “dry drunk syndrome,” are the reason why most alcoholics do not remain sober. Only from alcohol do they gain relief or achieve feelings of normality. These symptoms can persist indefinitely to some degree after alcohol consumption completely ceases. Even if former alcoholics remain sober, they can wind up living miserable lives and usually make everyone else around them miserable too. Dry drunk syndrome is the downfall of many a recovering alcoholic, even years after they quit drinking. Succumbing to just one drink can drive them into an uncontrollable drinking binge and further alcohol abuse.

There is more to alcoholism than simply a lack of self control or the desire for intoxication. Most alcoholics do not like the consequences of getting drunk and the devastating effects it has on their lives, yet they feel miserable without alcohol. These feelings are real. It is a mental sickness, a personality disorder that causes them to abandon rational judgment and even the sincere desire to stay sober.

Although sober, Roger struggled with the symptoms of dry drunk syndrome. He had already lost everything due to his drinking  problem and didn’t want to repeat past mistakes, so he began to search for a solution to ease his symptoms. His background in medicine led him to investigate alcohol’s effect on brain metabolism. He learned how chronic alcohol consumption can interfere with brain glucose metabolism, which can have a pronounced effect on brain function. He also investigated the importance of nutrition on brain health. His journey to find the best foods to nourish and heal the alcoholic brain led him to coconut oil and to the book,The Coconut Oil Miracle. He started taking coconut oil daily and within four days experienced the same sense of relief from symptoms that he got from alcohol—without the intoxication or the hangover. He experienced a sense of well-being and the ability to think clearly and rationally while sober. Over the next few weeks, he continued with the coconut oil and achieved a complete resolution of the irritability, melancholy, and mental anguish that had plagued him while sober. His dry drunk symptoms and his cravings for alcohol were gone! Nothing else he had ever experienced in his many years with alcohol treatment had come close to matching the effects of using coconut oil.

He enthusiastically began sharing this knowledge with other recovering alcoholics who were struggling with dry drunk syndrome. They, too, experienced the same feelings of well-being and clear thinking that had eluded them during treatment. Roger is now trying to spread the word about this new drug-free treatment for alcohol addiction. Although critics may claim that this treatment is based solely on antidotal evidence, there is good science to back it up.

Alcohol’s Damaging Effects on the Brain

Altered speech, hazy thinking, blurred vision, slowed reaction time, impaired memory: alcohol clearly has a pronounced effect on the brain. Some of these effects are detectable after only one or two drinks then disappear shortly after drinking stops. However, a person who drinks heavily over a long period of time may have brain defects that persist well after he or she becomes sober.

Alcohol is highly soluble in water and when it is consumed, it is absorbed quickly into the bloodstream. Once in the bloodstream, it circulates throughout the body where it can reach every cell in the body. The simple molecular structure of alcohol allows it to pass easily across the blood-brain barrier where it can come into direct contact with brain cells. Here it triggers oxidative stress and inflammation that can seriously affect brain function.1 If more than one or two drinks are consumed it can lead to the symptoms of intoxication.

If heavy drinking becomes chronic, then oxidative stress and inflammation in the brain become chronic. Chronic inflammation can lead to a disruption in normal glucose metabolism.2 Brain cells become insulin resistant and, therefore, cannot absorb glucose effectively.3 The primary source of fuel for the brain is glucose. However, glucose cannot enter the cells without the aid of the hormone insulin. Insulin unlocks the doorway on the cell membrane that allows glucose to enter. Insulin is absolutely essential. Your brain can be saturated with glucose, but if you don’t have insulin, the cells cannot get access to the glucose. If cells cannot get enough glucose to supply their energy needs, the cells degenerate and die. Without glucose, brain cells literally starve to death. This is what happens in the brain of an alcoholic. The damage caused by long term alcoholism can be just as extensive as that caused by Alzheimer’s.

Brain scans using positron emission tomography (PET) on living subjects have shown that intoxication decreases metabolic activity in certain areas of the brain controlling reason, memory, speech, coordination, balance, and vision.4-6 The decreased metabolism indicates a decrease in glucose uptake and conversion into energy. In detoxified alcoholics this decreased metabolism can persist even when the subject is sober.7 Reducing or eliminating alcohol consumption does not reverse alcohol-induced insulin resistance.8 It is insulin resistance and decreased metabolism in the brain that leads to the symptoms associated with dry drunk syndrome.

When alcohol circulates in the bloodstream it eventually passes through the liver, where it is broken down into acetaldehyde—a highly toxic substance that is the primary cause of alcohol-induced liver damage. Acetaldehyde is further broken down into acetic acid, which is a normal metabolite in humans and is nontoxic. About 90 percent of the alcohol consumed is eventually converted into acetic acid. The remaining 10 percent of the alcohol that is not metabolized is excreted in sweat, urine, and expelled in the person’s breath. The latter provides the basis for the breathalyzer test used in law enforcement and the reason you can smell alcohol in a person’s breath after they have been drinking. The liver has a limited capacity for detoxification and can only metabolize 0.25 ounce of pure alcohol per hour, leaving the remaining alcohol to continue its circulation throughout the body.

Although alcohol does not contain any nutrients, it does provide calories—7 calories per gram. This is almost twice as much as either carbohydrate or protein, each of which supplies 4 calories per gram, and just a little less than the 9 calories per gram supplied by fat. The calories from alcohol come from the acetic acid that is produced when alcohol is broken down in the liver.9Acetic acid is a two carbon short chain fatty acid—the smallest of all the fatty acids. It is soluble in both fat and water. In the bloodstream, acetic acid can easily pass through the blood-brain barrier. Like the medium chain fatty acids in coconut oil, acetic acid can diffuse across the cell membrane without the aid of insulin, providing a quick and easy source of energy for cells. In alcoholics, portions of the brain have become insulin resistant and, therefore, cannot effectively absorb glucose. However, the brain cells can absorb acetic acid, which supplies them with an alternative source of energy. Acetic acid partially compensates for the damage caused by alcohol by bypassing the defect in glucose metabolism.

Dr. Roger Hershline believes that the disruption in normal brain metabolism is what leads to the symptoms of dry drunk syndrome. The alcoholic brain, crippled by chronic insulin resistance, is literally starving for energy, causing depression, anxiety, fuzzy thinking, and other symptoms of dry drunk syndrome. Alcohol, although toxic to the brain, increases blood levels of acetic acid, thus providing the brain with a fuel it can use despite being insulin resistant. Repeated drinking has conditioned the brain to know that alcohol consumption increases acetic acid levels, which in turn provides the brain with the energy it desperately needs for survival. The desire for alcohol is a survival mechanism in an attempt to keep brain cells alive. Once this pattern has been set, the alcoholic will have strong desires to drink despite any intellectual or emotional desire to stop.10

In alcoholics, blood levels of acetic acid remain elevated for up to 24 hours after the last drink.11 As acetic acid levels decline, the symptoms and cravings for alcohol gradually return and intensify.

Dr. Hershline’s reasoning in many ways coincides with research coming out of Yale University School of Medicine. Dr. Lihong Jiang and his colleagues at Yale are investigating the use of acetic acid during alcohol detoxification.12 Their approach is to administer acetic acid to the patients as an aid in recovery. Dr. Hershline’s approach, however, appears to be easier and potentially much more effective.

Coconut Ketones and Brain Cell Regeneration

While acetic acid can supply the brain with much needed fuel, consuming alcohol is not a very good way to go about getting it. Acetic acid can be found in various foods. Vinegar is the richest natural source, containing 4-8 percent by volume. Fermented or picked vegetables and many condiments such as ketchup, prepared mustard, and some salad dressings contain acetic acid. But the amount in most condiments is so small that it would have little effect on brain health.

There is a much better option—coconut ketones. Coconut oil is composed primarily of a special group of fats known as medium chain fatty acids (MCFAs). When consumed, a portion of these MCFAs are automatically converted into a highly dense form of energy known as ketones. Like acetic acid, ketones do not require insulin to pass though cell membranes, so they can provide an easy source of energy. Ketones are known as “superfuel” for the brain because they provide more energy than either glucose or acetic acid and are readily absorbed by nerve and brain tissue. Coconut ketones can provide brain cells with a quick and easy source of high potentancy fuel that is superior to acetic acid. By supplying ketones on a regular basis, through the consumption of coconut oil, the brain’s conditioned dependence on acetic acid and desires for alcohol can be broken.

In addition to supplying a superior source of energy, ketones improve blood flow to the brain, improving circulation and oxygen delivery. Ketones also activate certain proteins in the brain called brain derived neurotrophic factors (BDNFs) that regulate brain cell repair, growth, and maintenance. BDNFs stimulate repair of damaged tissues, promote the growth of new brain cells, remove toxins, stop oxidative stress, calm inflammation, and improve insulin sensitivity, all of which allows the brain to heal and recover from injury—including alcohol induced injury.

At one time, it was believed that we could not regenerate new brain cells. The brain cells we were born with, scientists thought, had to last an entire lifetime. When brain cells died, they were gone forever. Research over the past several years has shown that this is not true. The brain can and does generate new cells, even in old age.13 This process is called neurogenesis. These new cells originate from stem cells in the brain. Stem cells are special cells that can divide indefinitely, renew themselves, and give rise to a variety of cells types. The discovery of adult neurogenesis and brain stem cell activation by coconut ketones provides a new way of approaching the problem of alcohol-related changes in the brain and overcoming alcohol addiction.

Dr. Hershline consumed up to 8 tablespoons (109 g) of coconut oil daily in his own treatment. However, blood ketone levels can be raised to therapeutic levels with 5 to 6 tablespoons (68-82 g) daily. The oil should be divided into three 1½ -2 tablespoon doses and should be consumed with foods.


1. Haorah, J., et al. Alcohol-induced oxidative stress in brain endothelial cells causes blood-brain barrier dysfunction. J Leukoc Biol 2005;78:1223-1232.

2. Haiyan, X., et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 2003;112:1821-1830.

3. Ting, J.W. and Lautt, W.W. The effect of acute, chronic, and prenatal ethanol exposure on insulin sensitivity. Pharmacol Ther. 2006;111(2):346–373.

4. Gene-Jack, W., et al. Regional brain metabolism during alcohol intoxication.Alcohol Clin Exp res 2000;24:822-829.

5. Volkow ND, et al. Low doses of alcohol substantially decrease glucose metabolism in the human brain. Neuroimage. 2006;29(1):295–301.

6. Volkow, N.D., et al. Acute alcohol intoxication decreases glucose metabolism but increases acetate uptake in the human brain. Neuroimage. 2013;64:277–283.

7. Volkow, N.D., et al. recovery of brain glucose metabolism in detoxified alcoholics. Am J Psychiatry 1994;151:178-183.

8. Zilkens, R.R., et al. The effect of alcohol lintake on insulin sensitivity in men.Diabetes Care 2003;26:608-612.

9. Patel, A.B., et al. Evaluation of cerebral acetate transport and metabolic rates in the rat brain in vivo using 1H-[13C]-NMR. J Cereb Blood Flow Metab.2010;30(6):1200–1213.

10. Hershline, R. Why Do I Drink?: The Role of Brain Metabolism. Published by Roger Hersline, Hilton Head Island, SC, 2013.

11. Pronko, P.S., et al. Low-molecular-weight metabolites relevant to ethanol metabolism: correlation with alcohol withdrawal severity and utility for identification of alcoholics. Alcohol Alcohol. 1997;32(6):761–768.

12. Lihong, J, et al. Increased brain uptake and oxidation of acetate in heavy drinkers. J Clin Invest 2013; 123:1605-1614.

13. Eriksson, P.S., et al. Neurogenesis in the adult human hippocampus. Nat Med1998;4:1313-1317.


Posted on Leave a comment

Dirty Dozen & Clean 15

The new Dirty Dozen and Clean 15 Lists have been released for 2013.

The dirty, pesticide & herbicide laden list of 12 produce items have the highest levels of pesticide residue (even after being washed and peeled). So if you are interested in organics, these products are the ones that you want to focus on (in order of importance).

These twelve foods are where you want to spend the extra money on organic produce whenever possible:

  1. Apples
  2. Strawberries
  3. Grapes
  4. Celery
  5. Peaches
  6. Spinach
  7. Sweet Bell Peppers
  8. Nectarines- imported
  9. Cucumbers
  10. Potatoes
  11. Cherry Tomatoes
  12. Hot Peppers

And here is the Clean 15 list for 2013.  These are the items with the least amount of pesticide contamination found so when budget is tight and availability are scarce these are acceptable when buying non-organic.

  1. Sweet Corn (Although at the top of EWG ‘s  list, we at YAH are suspect with corn! Corn is a high GMO crop – ask and confirm that it is not a GMO corn variety)
  2. Onions
  3. Pineapple
  4. Avocado
  5. Cabbage
  6. Sweet Peas- frozen
  7. Papaya (The varieties of non-organic papaya that you should stay away from are the GMO ones and they are:  Rainbow, Sunrise,/Sun Up, Kamiya Laie)
  8. Mangos
  9. Asparagus
  10. Eggplant
  11. Kiwi
  12. Grapefruit
  13. Cantaloupe
  14. Sweet Potato
  15. Mushrooms ( You should also be careful with eating mushrooms, ask your Grocer or Grower what they grow their mushrooms on to ensure that they are not contaminated)

And there is also a Dirty Dozen Plus- these items are not on the Dirty Dozen list but still something to try to find in organic if you can:

  1. Summer Squash
  2. Leafy Greens (kale and collards in particular)

And if you want to have this list on the go:

There is a free Dirty Dozen app you can grab that has these lists available.

Please remember that eating someproduce is better then no produce in your diet 🙂 The list above is a guideline to help us all transition away from dangerously high levels of pesticides foods to clean foods.  Your buying power is your vote for health and a vote against those money driven non-organic Growers.


Posted on Leave a comment

Food Fight Video



By: Earth Amplified
By: Earth Amplified

Warning:  its content is a bit graffic but not tastelessly so.

‘Food Fight’ video; food resistance movement crosses racial lines, black, white, Latino all fight for survival against the processed food death machine

Check out this music video  called “Food Fight” put together by Earth Amplified as it portrays the evils of a Fast Food Nation addicted to processed food, to be exact: the nutrient-depleted, overly-refined, pasteurized homogenized GMO-contaminated pesticide-sprayed food that is cunningly packaged and distributed by those to grow, produce, market and support it.

Conceived by Ashel Eldridge (aka Seasunz), founder of Earth Amplified, S.O.S. Juice and a spiritual activist, “Food Fight” is a message that needs to be blasted out across the world to reach into the minds and hearts of every citizen, every member of urban youth and every human being alive today, regardless of race or economic status.

Watch it here:
Food Fight Video by Seasunz

Join the fight with for food justice!

Eat Fresh, Eat Raw!!!!!!!!!

Posted on

Avocado may be the next Big Anti-Aging Food

Scientists discovered avocado may block free radical damage

May 7, 2012By Mary West


Scientists have discovered some impressive, previously unknown health benefits of avocados. This exotic fruit was found to have potent anti-aging properties, in addition to the ability to fight certain diseases due to its unique capacity to protect against free radicals.
This distinctive feature of avocados centers on mitochondria, structures that serve as the power supply of cells. Many environmental pollutants like cigarette smoke and radiation can transform oxygen molecules contained within mitochondria into free radicals, which are destructive unstable molecules. These unstable substances harm cells of many compounds, such as protein, lipids and DNA, changing them into free radicals as well. This detrimental process is linked with aging, and it also plays a role in the development of an array of illnesses.
Since mitochondria play a vital role in free radical damage, researchers have tried unsuccessfully to find antioxidants in fruit and vegetables that can gain entrance into these structures. Without an agent to stop the free radical damage of mitochondria, the destructive process can continue unimpeded within the body.
But a new study found that avocado antioxidants are able to enter mitochondria and boost their energy activity, permitting them to function in a healthy manner even while being vigorously attacked by free radicals. It is this quality that distinguishes avocados from fruits and vegetables containing antioxidants unable to penetrate these energy-producing powerhouses.
The study author Christian Cortés-Rojo compares the effect of avocados to other antioxidants. He provides the analogy of an oil spill, indicating that some measures merely clean up the oil without stopping the escape of the oil from its source. Antioxidants from other food sources could be likened to the measures that help clean up the oil, while antioxidants from avocados could be compared to a measure that actually helps stop the oil flow.
Aside from the exciting benefit of hindering the negative impact of oxygen in the body, avocados have been found to lower cholesterol and help alleviate diabetes. The type of fat present in this fruit is also helpful in fighting many other illnesses, such as heart disease and cancer.
Results of the study were presented at a meeting of the American Society of Biochemistry and Molecular Biology. Because Cortés-Rojo’s team used yeast to investigate the effects of avocados, the author emphasizes the need to confirm the findings in research involving humans.


Posted on

The Comparative Anatomy of Eating

by Milton R. Mills, M.D.

Assoc Director of Preventive Medicine for the Washington, D.C.-based Physicians Committee for Responsible Medicine (PCRM)

Humans are most often described as “omnivores”. This classification is based on the “observation” that humans generally eat a wide variety of plant and animal foods. However, culture, custom and training are confounding variables when looking at human dietary practices. Thus, “observation” is not the best technique to use when trying to identify the most “natural” diet for humans. While most humans are clearly “behavioral” omnivores, the question still remains as to whether humans are anatomically suited for a diet that includes animal as well as plant foods. 

A better and more objective technique is to look at human anatomy and physiology. Mammals are anatomically and physiologically adapted to procure and consume particular kinds of diets. (It is common practice when examining fossils of extinct mammals to examine anatomical features to deduce the animal’s probable diet.) Therefore, we can look at mammalian carnivores, herbivores (plant-eaters) and omnivores to see which anatomical and physiological features are associated with each kind of diet. Then we can look at human anatomy and physiology to see in which group we belong. 

Oral Cavity

Carnivores have a wide mouth opening in relation to their head size. This confers obvious advantages in developing the forces used in seizing, killing and dismembering prey. Facial musculature is reduced since these muscles would hinder a wide gape, and play no part in the animal’s preparation of food for swallowing. In all mammalian carnivores, the jaw joint is a simple hinge joint lying in the same plane as the teeth. This type of joint is extremely stable and acts as the pivot point for the “lever arms” formed by the upper and lower jaws. The primary muscle used for operating the jaw in carnivores is the temporalis muscle. This muscle is so massive in carnivores that it accounts for most of the bulk of the sides of the head (when you pet a dog, you are petting its temporalis muscles). The “angle” of the mandible (lower jaw) in carnivores is small. This is because the muscles (masseter and pterygoids) that attach there are of minor importance in these animals. The lower jaw of carnivores cannot move forward, and has very limited side-to-side motion. When the jaw of a carnivore closes, the blade-shaped cheek molars slide past each other to give a slicing motion that is very effective for shearing meat off bone. 

The teeth of a carnivore are discretely spaced so as not to trap stringy debris. The incisors are short, pointed and prong-like and are used for grasping and shredding. The canines are greatly elongated and dagger-like for stabbing, tearing and killing prey. The molars (carnassials) are flattened and triangular with jagged edges such that they function like serrated-edged blades. Because of the hinge-type joint, when a carnivore closes its jaw, the cheek teeth come together in a back-to-front fashion giving a smooth cutting motion like the blades on a pair of shears. 

The saliva of carnivorous animals does not contain digestive enzymes. When eating, a mammalian carnivore gorges itself rapidly and does not chew its food. Since proteolytic (protein-digesting) enzymes cannot be liberated in the mouth due to the danger of autodigestion (damaging the oral cavity), carnivores do not need to mix their food with saliva; they simply bite off huge chunks of meat and swallow them whole. 

According to evolutionary theory, the anatomical features consistent with an herbivorous diet represent a more recently derived condition than that of the carnivore. Herbivorous mammals have well-developed facial musculature, fleshy lips, a relatively small opening into the oral cavity and a thickened, muscular tongue. The lips aid in the movement of food into the mouth and, along with the facial (cheek) musculature and tongue, assist in the chewing of food. In herbivores, the jaw joint has moved to position above the plane of the teeth. Although this type of joint is less stable than the hinge-type joint of the carnivore, it is much more mobile and allows the complex jaw motions needed when chewing plant foods. Additionally, this type of jaw joint allows the upper and lower cheek teeth to come together along the length of the jaw more or less at once when the mouth is closed in order to form grinding platforms. (This type of joint is so important to a plant-eating animal, that it is believed to have evolved at least 15 different times in various plant-eating mammalian species.) The angle of the mandible has expanded to provide a broad area of attachment for the well-developed masseter and pterygoid muscles (these are the major muscles of chewing in plant-eating animals). The temporalis muscle is small and of minor importance. The masseter and pterygoid muscles hold the mandible in a sling-like arrangement and swing the jaw from side-to-side. Accordingly, the lower jaw of plant-eating mammals has a pronounced sideways motion when eating. This lateral movement is necessary for the grinding motion of chewing.

The dentition of herbivores is quite varied depending on the kind of vegetation a particular species is adapted to eat. Although these animals differ in the types and numbers of teeth they posses, the various kinds of teeth when present, share common structural features. The incisors are broad, flattened and spade-like. Canines may be small as in horses, prominent as in hippos, pigs and some primates (these are thought to be used for defense) or absent altogether. The molars, in general, are squared and flattened on top to provide a grinding surface. The molars cannot vertically slide past one another in a shearing/slicing motion, but they do horizontally slide across one another to crush and grind. The surface features of the molars vary depending on the type of plant material the animal eats. The teeth of herbivorous animals are closely grouped so that the incisors form an efficient cropping/biting mechanism, and the upper and lower molars form extended platforms for crushing and grinding. The “walled-in” oral cavity has a lot of potential space that is realized during eating. 

These animals carefully and methodically chew their food, pushing the food back and forth into the grinding teeth with the tongue and cheek muscles. This thorough process is necessary to mechanically disrupt plant cell walls in order to release the digestible intracellular contents and ensure thorough mixing of this material with their saliva. This is important because the saliva of plant-eating mammals often contains carbohydrate-digesting enzymes which begin breaking down food molecules while the food is still in the mouth. 

Stomach and Small Intestine

Striking differences between carnivores and herbivores are seen in these organs. Carnivores have a capacious simple (single-chambered) stomach. The stomach volume of a carnivore represents 60-70% of the total capacity of the digestive system. Because meat is relatively easily digested,
their small intestines (where absorption of food molecules takes place) are short — about three to five or six times the body length. Since these animals average a kill only about once a week, a large stomach volume is advantageous because it allows the animals to quickly gorge themselves when eating, taking in as much meat as possible at one time which can then be digested later while resting. Additionally, the ability of the carnivore stomach to secrete hydrochloric acid is exceptional. Carnivores are able to keep their gastric pH down around 1-2 even with food present. This is necessary to facilitate protein breakdown and to kill the abundant dangerous bacteria often found in decaying flesh foods. 

Because of the relative difficulty with which various kinds of plant foods are broken down (due to large amounts of indigestible fibers), herbivores have significantly longer and in some cases, far more elaborate guts than carnivores. Herbivorous animals that consume plants containing a high proportion of cellulose must “ferment” (digest by bacterial enzyme action) their food to obtain the nutrient value. They are classified as either “ruminants” (foregut fermenters) or hindgut fermenters. The ruminants are the plant-eating animals with the celebrated multiple-chambered stomachs. Herbivorous animals that eat a diet of relatively soft vegetation do not need a multiple-chambered stomach. They typically have a simple stomach, and a long small intestine. These animals ferment the difficult-to-digest fibrous portions of their diets in their hindguts (colons). Many of these herbivores increase the sophistication and efficiency of their GI tracts by including carbohydrate-digesting enzymes in their saliva. A multiple-stomach fermentation process in an animal which consumed a diet of soft, pulpy vegetation would be energetically wasteful. Nutrients and calories would be consumed by the fermenting bacteria and protozoa before reaching the small intestine for absorption. The small intestine of plant-eating animals tends to be very long (greater than 10 times body length) to allow adequate time and space for absorption of the nutrients. 


The large intestine (colon) of carnivores is simple and very short, as its only purposes are to absorb salt and water. It is approximately the same diameter as the small intestine and, consequently, has a limited capacity to function as a reservoir. The colon is short and non-pouched. The muscle is distributed throughout the wall, giving the colon a smooth cylindrical appearance. Although a bacterial population is present in the colon of carnivores, its activities are essentially putrefactive. 

In herbivorous animals, the large intestine tends to be a highly specialized organ involved in water and electrolyte absorption, vitamin production and absorption, and/or fermentation of fibrous plant materials. The colons of herbivores are usually wider than their small intestine and are relatively long. In some plant-eating mammals, the colon has a pouched appearance due to the arrangement of the muscle fibers in the intestinal wall. Additionally, in some herbivores the cecum (the first section of the colon) is quite large and serves as the primary or accessory fermentation site. 

What About Omnivores?

One would expect an omnivore to show anatomical features which equip it to eat both animal and plant foods. According to evolutionary theory, carnivore gut structure is more primitive than herbivorous adaptations. Thus, an omnivore might be expected to be a carnivore which shows some gastrointestinal tract adaptations to an herbivorous diet. 

This is exactly the situation we find in the Bear, Raccoon and certain members of the Canine families. (This discussion will be limited to bears because they are, in general, representative of the anatomical omnivores.) Bears are classified as carnivores but are classic anatomical omnivores. Although they eat some animal foods, bears are primarily herbivorous with 70-80% of their diet comprised of plant foods. (The one exception is the Polar bear which lives in the frozen, vegetation poor arctic and feeds primarily on seal blubber.) Bears cannot digest fibrous vegetation well, and therefore, are highly selective feeders. Their diet is dominated by primarily succulent lent herbage, tubers and berries. Many scientists believe the reason bears hibernate is because their chief food (succulent vegetation) not available in the cold northern winters. (Interestingly, Polar bears hibernate during the summer months when seals are unavailable.) 

In general, bears exhibit anatomical features consistent with a carnivorous diet. The jaw joint of bears is in the same plane as the molar teeth. The temporalis muscle is massive, and the angle of the mandible is small corresponding to the limited role the pterygoid and masseter muscles play in operating the jaw. The small intestine is short ( less than five times body length) like that of the pure carnivores, and the colon is simple, smooth and short. The most prominent adaptation to an herbivorous diet in bears (and other “anatomical” omnivores) is the modification of their dentition. Bears retain the peg-like incisors, large canines and shearing premolars of a carnivore; but the molars have become squared with rounded cusps for crushing and grinding. Bears have not, however, adopted the flattened, blunt nails seen in most herbivores and retain the elongated, pointed claws of a carnivore. 

An animal which captures, kills and eats prey must have the physical equipment which makes predation practical and efficient. Since bears include significant amounts of meat in their diet, they must retain the anatomical features that permit them to capture and kill prey animals. Hence, bears have a jaw structure, musculature and dentition which enable them to develop and apply the forces necessary to kill and dismember prey even though the majority of their diet is comprised of plant foods. Although an herbivore-style jaw joint (above the plane of the teeth) is a far more efficient joint for crushing and grinding vegetation and would potentially allow bears to exploit a wider range of plant foods in their diet, it is a much weaker joint than the hinge-style carnivore joint. The herbivore-style jaw joint is relatively easily dislocated and would not hold up well under the stresses of subduing struggling prey and/or crushing bones (nor would it allow the wide gape carnivores need). In the wild, an animal with a dislocated jaw would either soon starve to death or be eaten by something else and would, therefore, be selected against. A given species cannot adopt the weaker but more mobile and efficient herbivore-style joint until it has committed to an essentially plant-food diet test it risk jaw dislocation, death and ultimately, extinction. 

What About Me?

The human gastrointestinal tract features the anatomical modifications consistent with an herbivorous diet. Humans have muscular lips and a small opening into the oral cavity. Many of the so-called “muscles of expression” are
actually the muscles used in chewing. The muscular and agile tongue essential for eating, has adapted to use in speech and other things. The mandibular joint is flattened by a cartilaginous plate and is located well above the plane of the teeth. The temporalis muscle is reduced. The characteristic “square jaw” of adult males reflects the expanded angular process of the mandible and the enlarged masseter/pterygoid muscle group. The human mandible can move forward to engage the incisors, and side-to-side to crush and grind. 

Human teeth are also similar to those found in other herbivores with the exception of the canines (the canines of some of the apes are elongated and are thought to be used for display and/or defense). Our teeth are rather large and usually abut against one another. The incisors are flat and spade-like, useful for peeling, snipping and biting relatively soft materials. The canines are neither serrated nor conical, but are flattened, blunt and small and function Like incisors. The premolars and molars are squarish, flattened and nodular, and used for crushing, grinding and pulping noncoarse foods. 

Human saliva contains the carbohydrate-digesting enzyme, salivary amylase. This enzyme is responsible for the majority of starch digestion. The esophagus is narrow and suited to small, soft balls of thoroughly chewed food. Eating quickly, attempting to swallow a large amount of food or swallowing fibrous and/or poorly chewed food (meat is the most frequent culprit) often results in choking in humans. 

Man’s stomach is single-chambered, but only moderately acidic. (Clinically, a person presenting with a gastric pH less than 4-5 when there is food in the stomach is cause for concern.) The stomach volume represents about 21-27% of the total volume of the human GI tract. The stomach serves as a mixing and storage chamber, mixing and liquefying ingested foodstuffs and regulating their entry into the small intestine. The human small intestine is long, averaging from 10 to 11 times the body length. (Our small intestine averages 22 to 30 feet in length. Human body size is measured from the top of the head to end of the spine and averages between two to three feet in length in normal-sized individuals.) 

The human colon demonstrates the pouched structure peculiar to herbivores. The distensible large intestine is larger in cross-section than the small intestine, and is relatively long. Man’s colon is responsible for water and electrolyte absorption and vitamin production and absorption. There is also extensive bacterial fermentation of fibrous plant materials, with the production and absorption of significant amounts of food energy (volatile short-chain fatty acids) depending upon the fiber content of the diet. The extent to which the fermentation and absorption of metabolites takes place in the human colon has only recently begun to be investigated. 

In conclusion, we see that human beings have the gastrointestinal tract structure of a “committed” herbivore. Humankind does not show the mixed structural features one expects and finds in anatomical omnivores such as bears and raccoons. Thus, from comparing the gastrointestinal tract of humans to that of carnivores, herbivores and omnivores we must conclude that humankind’s GI tract is designed for a purely plant-food diet.


Humans are biologically herbivores
Facial muscles
Reduced to allow wide mouth gape Reduced Well-developed Well-developed
Jaw type
Angle not expanded Angle not expanded Expanded angle Expanded angle
Jaw joint location
On same plane as molar teeth On same plane as molar teeth Above the plane of the molars Above the plane of the molars
Jaw motion
Shearing; minimal side-to-side motion Shearing; minimal side-to-side motion No shear; good side-to-side, front-to-back No shear; good side-to-side, front-to-back
Major jaw muscles
Temporalis Temporalis Masseter and ptergoids Masseter and pterygoids
Mouth opening vs. head size
Large Large Small Small
Teeth: Incisors
Short and pointed Short and pointed Broad, flattened and spade-shaped Broad, flattened and spade-shaped
Teeth: Canines
Long, sharp, and curved Long, sharp and curved Dull and short or long (for defense), or none Short and blunted
Teeth: Molars
Sharp, jagged and blade-shaped Sharp blades and/or flattened Flattened with cusps vs. complex surface Flattened with nodular cusps
None; swallows food whole Swallows food whole and/or simple crushing Extensive chewing necessary Extensive chewing necessary
No digestive enzymes No digestive enzymes Carbohydrate digesting enzymes Carbohydrate digesting enzymes
Stomach type
Simple Simple Simple or multiple chambers Simple
Stomach acidity with food in stomach
≤ pH 1 ≤ pH 1 pH 4-5 pH 4-5
Length of small intestine
3-6 times body length 4-6 times body length 10-12+ times body length 10-11 times body length
Simple, short, and smooth Simple, short, and smooth Long, complex; may be sacculated Long, sacculated
Can detoxify vitamin A Can detoxify vitamin A Cannot detoxify vitamin A Cannot detoxify vitamin A
Extremely concentrated urine Extremely concentrated urine Moderately concentrated urine Moderately concentrated urine
Sharp claws Sharp claws Flattened nails or blunt hooves Flattened nails
From The Comparative Anatomy of Eating (PDF), by Milton R. Mills, M.D.
Posted on


“By age 44 I had been sick with undiagnosed illness for almost 10 years. I looked and felt like the average 75 year-old. Then I was introduced to Dr. Nikica Divich, and his gourmet raw food classes. I attended his classes weekly without fail for more than a year, and I continue to stay in touch with him.”

“Now at age 50, I feel like a young man in my 20’s, and I consider my goal of having the strength of an Olympic athlete well within reach. This level of health does not come from surgery, injections or pills. It takes determination and commitment, and lots of it.”

“We can however make health seem easy and natural by surrounding ourselves with people who know and live health. We all know as we all age, the currency of choice is health. Personally I am ever so grateful for the wisdom that Dr. Divich openly shares.“

In love and health,
Norman M.
Vancouver, Canada

“Hi Nikica,
Just wanted to pass on my thanks for Saturday’s class.  It was really fun, informative and most of all, very yummy.  It was also very apparent that you both have a very great community that you have fostered and built on and I’m really honoured to be part of that.”

“I felt really good after the class and made a couple of recipes yesterday, and would be interested in learning more about food combining and the basic underpinnings of eating raw.  I really liked the food combining chart, but have to admit, I don’t have any idea about what it means!  I’m not sure what the options are – can I talk further with you about it, or can you point me to some websites or books for more information?  I can definitely see myself eating raw for 2 days a week in order to figure out how my body works best with it, but am wary to step into this without some help.”

— Jessica

“Dr. Nikica has truly found the ultimate in sustainable and healthy living when it comes to the fuel you put in your body, the key… simplicity!!! After taking some juicing courses last year, I was hooked on how easy it was to get nutritious and delicious foods in its most rawest and digestable forms. The majority of my food intake is now raw, organic, and fresh, and I have never felt as ‘alive’ as I have today. More importantly, when non-raw/organic/fresh foods enter my body, I can easily detect a negative reaction. Becoming aware of what we put in our body is key, and I would recommend that EVERYONE go to at least one of Dr. Nikica’s classes to get educated on how to become more aware and learning how simple and tasty it is to eat the YAH way.”

Kris Dickie — Healthy Living Cultivator

“I had little idea of profound truth that he was seeking as he set out on his own.  But I do know that each time I united with him he seemed to be timeless – aging was suspended and his vitality for life was unrelenting.

My first baby steps towards myself and consciousness came each time cases of fresh fruit arrived from the Similkimean and Okanogan valleys of British Columbia.  I had no idea that what he was doing was coercing me on a cellular level to connect to a universal truth of life ordering proportions.  Then he came to visit me and convinced me to invest in a Champion Juicer.  I still have that 25 year old Champion and I had to replace a broken part because our son dropped it on a vulnerable tooth on a concrete floor…  Then years later I bought the sales pitch from the good Doc about investing in a Vitamix blender.  This investment too led me further into cellular regeneration.

I want doc Nikica to know that I am forever grateful to him for lighting my path towards true freedom.  It is his wild unstoppable energy that is infectious and revs my engine up every time we connect.  We decided at an early age to be there for each other and so here we are today still together.  Although I will always be in his shadow, after all he is a faster sprinter, I am continually bathed by his unconditional love.”

— JOYce D.

Your scope is fantastic. I have seen for a long time the reality you are describing. Some days I get up to about 30% to just dropping it all and going to live in the jungle with nature.
Your title should be Master. You are many lifetimes beyond Dr.

Thanks for your helpful reply.

— Sasa

Dear Nikica,
February 2008 marks my 5 year birthday of eating 10% raw food.

I know that the Raw Food Lifestyle has played a very important roll in my health recovery. I don’t think that I could have stayed with the Raw lifestyle  without your help. Your understanding ways, your encouragement and your sharing of knowledge have assisted me greatly. You have been much appreciated. .

As your know, I was labeled with MS about 8 years ago. The Neurologist told me that my health progression would be to die bed ridden after some unknown time period of steady down hill health problems. I would progressively loose the ability to walk, end up bed ridden being feed by another’s hand.  He said that there was no cure for this disease and that all he could offer was drugs to slow the progression of the disease.

The first year after I was labeled with MS my health followed the coarse that the neurologist had prescribed. My right leg was in a brace and I had just been given a new keg brace that completely demobilized the leg and making it impossible for most of the leg muscles to function.
Fortunately for me, a few people like you came into my life and with their help we were able to turn my down hill health slide around and to start  my body healing.
Today my health is much better than it was when I was labeled with MS and it is very much better than it was at the bottom of my health slide.
Thanks again for everything and Lots of Inner light.

— Russ